PubAg

Main content area

Mechanisms underlying increased nest predation in natural gas fields: a test of the mesopredator release hypothesis

Author:
Sanders, Lindsey E., Chalfoun, Anna D.
Source:
Ecosphere 2019 v.10 no.5 pp. e02738
ISSN:
2150-8925
Subject:
Canis latrans, Corvidae, Peromyscus maniculatus, Tamias minimus, anthropogenic activities, badgers, birds of prey, community structure, control methods, energy, habitats, humans, landscapes, mice, natural gas, nests, predation, predator control, risk, songbirds, Wyoming
Abstract:
Anthropogenic activities are changing landscapes and the context in which predator–prey dynamics evolved, thereby altering key ecological processes and community structure. Yet, the specific mechanisms underlying such changes are rarely understood. We tested whether a mesopredator release explained increased rodent density and concomitant predation of songbird nests near natural gas development. From 2015 to 2016, we surveyed apex predators (coyotes, badgers, raptors, and corvids) and measured apparent survival and perceived predation risk of deer mice (Peromyscus maniculatus; a primary nest predator), at 12 plots spanning a gradient of surface disturbance caused by energy development in Wyoming, USA. Additionally, we measured densities of three nest predators: deer mice, least chipmunks (Tamias minimus), and thirteen‐lined ground squirrels (Ictidomys tridecemlineatus). Contrary to the mesopredator release hypothesis, counts of apex predators and perceived predation risk of deer mice increased with surface disturbance from energy development, whereas apparent survival of mice decreased. Densities of mice and ground squirrels, however, increased with surface disturbance, despite increased predation pressure. We therefore rejected the mesopredator release hypothesis as a potential mechanism underlying altered trophic dynamics near energy development. Our results suggest that apex predator control measures would not benefit declining songbirds on natural gas fields. Rather, apex predator abundance may be regulated from the bottom‐up by rodents in this system. Our results corroborate a pattern showing weakened effects of mesopredator release in habitats modified by humans. Understanding how predator–prey dynamics may be altered in novel environments requires an understanding of how predators and prey alike respond to habitat change under different contexts.
Agid:
6457619