Main content area

Establishment of a Multiplex Loop-Mediated Isothermal Amplification Method for Rapid Detection of Sulfonamide Resistance Genes (sul1, sul2, sul3) in Clinical Enterobacteriaceae Isolates from Poultry

Gong, Jiansen, Zhuang, Linlin, Zhang, Di, Zhang, Ping, Dou, Xinhong, Wang, Chengming
Foodborne pathogens & disease 2018 v.15 no.7 pp. 413-419
DNA, Gram-negative bacteria, Salmonella Indiana, anti-infective agents, antibiotic resistance genes, detection limit, genotype, loop-mediated isothermal amplification, polymerase chain reaction, poultry, rapid methods, restriction endonucleases, serotypes
Antimicrobial resistance genes play an important role in mediating resistance to sulfonamide in Gram-negative bacteria. While PCR is the current method to detect sulfonamide resistance genes (sul1, sul2, sul3), it is time-consuming and costly and there is an urgent need to develop a more convenient, simpler and rapid test for the sul. In this study, we describe a multiplex loop-mediated isothermal amplification (m-LAMP) assay we developed for the rapid and simultaneous detection of three sul. This m-LAMP assay successfully detected seven reference strains with different sul genotypes, but was negative for nine sul-negative reference strains. The m-LAMP products were verified by HinfI restriction enzyme digestion and the detection limit of the test was 0.5 pg genomic DNA per reaction. Testing 307 sulfonamide-resistant Enterobacteriaceae clinical isolates with the m-LAMP revealed all were positive for the sul with sul2 (79.5%) and sul1 (64.5%) being most prevalent, and sul3 the least (12.1%). Of the Enterobacteriaceae isolates tested, the Salmonella Indiana, a newly emerging serovar resistant to numerous antimicrobials, were most commonly positive with 33% having sul3.