Main content area

Improved Charge Transport and Reduced Non-Geminate Recombination in Organic Solar Cells by Adding Size-Selected Graphene Oxide Nanosheets

Kim, Joo-Hyun, Sin, Dong Hun, Kim, Haena, Jo, Sae Byeok, Lee, Hansol, Han, Joong Tark, Cho, Kilwon
ACS applied materials & interfaces 2019 v.11 no.22 pp. 20183-20191
electrical properties, graphene oxide, moieties, nanosheets, solar cells, sonication
Size-selected graphene oxide (GO) nanosheets were used to modify the bulk heterojunction (BHJ) morphology and electrical properties of organic photovoltaic (OPV) devices. The GO nanosheets were prepared with sizes ranging from several hundreds of nanometers to micrometers by using a physical sonication process and were then incorporated into PTB7:PC₇₁BM photoactive layers. Different GO sizes provide varied portions of the basal plane where aromatic sp²-hybridized regions are dominant and edges where oxygenated functional groups are located; thus, GO size distributions affect the GO dispersion stability and morphological aggregation of the BHJ layer. Electron delocalization by sp²-hybridization and the electron-withdrawing characteristics of functional groups p-dope the photoactive layer, giving rise to increasing carrier mobilities. Hole and electron mobilities are maximized at GO sizes of several hundreds of nanometers. Consequently, non-geminate recombination is significantly reduced by these facilitated hole and electron transports. The addition of GO nanosheets decreases the recombination order of non-geminate recombination and increases the generated carrier density. This reduction in the non-geminate recombination contributes to an increased power conversion efficiency of PTB7:PC₇₁BM OPV devices as high as 9.21%, particularly, by increasing the fill factor to 70.5% in normal devices and 69.4% in inverted devices.