Main content area

Genome-wide identification and expression analysis of citrus fruitlet abscission-related polygalacturonase genes

Ge, Ting, Huang, Xue, Pan, Xiaoting, Zhang, Jing, Xie, Rangjin
3 Biotech 2019 v.9 no.7 pp. 250
Citrus, abscission, alternative splicing, ethylene, indole acetic acid, introns, molecular weight, open reading frames, phylogeny, polygalacturonase, probability, proteins
Polygalacturonases (PGs) encoded by a relatively large gene family are involved in plant organ abscission, but few data is available in citrus. Here, to explore the role of PGs in citrus fruitlet abscission (CFA), we have obtained 38 citrus PG (CitPG) members, based on the citrus genome sequences. The ORF length varied from 378 to 2418 bp, encoding proteins with theoretical pI and molecular mass ranging from 4.83 to 9.92 and from 13,951.71 to 85,542.28, respectively. Most CitPGs contained no less than 3 introns, suggesting a high probability of alternative splicing. Phylogenetic tree revealed that all PGs could be divided into three groups, in which 9 CitPGs, including CitPG2, CitPG3, CitPG10, CitPG24, CitPG27, CitPG29, CitPG30, CitPG33 and CitPG34 possessed a close relationship with abscission-associated PGs, indicating their role in CFA. Expression analysis further demonstrated that CitPG2, CitPG29 and CitPG34 might be involved in CFA, the expression levels of which could be induced by ethylene, inhibited by IAA and increased during CFA. The findings in this study have provided a foundation for future studies to elucidate the roles of CitPGs in CFA.