Main content area

Metabolites of phosphate flame retardants and alternative plasticizers in urine from intensive care patients

Bastiaensen, Michiel, Malarvannan, Govindan, Been, Frederic, Yin, Shanshan, Yao, Yiming, Huygh, Johan, Clotman, Katrien, Schepens, Tom, Jorens, Philippe G., Covaci, Adrian
Chemosphere 2019 v.233 pp. 590-596
adults, flame retardants, medical equipment, metabolites, patients, phosphates, phthalates, plasticizers, toxicity, urine
Several regulatory offices called for the phase-out of di (2-ethylhexyl) phthalate (DEHP) in medical devices if safer alternatives are available. In medical devices, the occurrence of alternative plasticizers (APs) is widely variable among types of devices. However, plasticizer use is constantly evolving, as there is no reference to guide manufacturers in the choice and amount to be integrated into their products. As intensive care unit (ICU) patients need numerous indwelling plastic devices during their treatment, we hypothesized that these patients are exposed to APs and phosphate flame retardants and plasticizers (PFRs). Urinary metabolites of APs and PFRs were analyzed in the urine of adult ICU patients (n = 24) over a time period of four days. Our results show that adult ICU patients are exposed to PFRs as well as to APs concentrations were much lower compared to the levels of DEHP metabolites in the same samples. However, significantly higher than in controls (n = 15) this exposure resulted in detectable urinary levels in almost every patient and at every studied time point. Increasing temporal trends were observed for several metabolites from admission until day 3 at ICU. The use of specific medical devices, such as continuous venovenous hemofiltration (CVVH) and extracorporeal membrane oxygenation (ECMO), was associated with an increase in urinary concentrations for several PFR metabolites, despite the lack of information on the presence of these plasticizer chemicals in such medical devices. Further research into the possibly toxic effects of these chemicals released from medical devices is urgently needed.