Main content area

Effective removal by coagulation of contaminants in concentrated leachate from municipal solid waste incineration power plants

Ren, Xu, Xu, Ximeng, Xiao, Yu, Chen, Weiming, Song, Kai
The Science of the total environment 2019 v.685 pp. 392-400
chemical oxygen demand, coagulants, coagulation, color, humification, leachates, molecular weight, municipal solid waste, nanofiltration, organic matter, pollutants, power plants, total nitrogen, turbidity, waste incineration, China
Municipal solid waste (MSW) incineration is widely used in China. Concentrated leachate, containing high concentrations of pollutants, is an important type of secondary pollution produced in MSW incineration power plants and requires proper treatment. In this study, various coagulants were used to treat concentrated leachate from a nanofiltration (NF) membrane that treated leachate from an MSW incineration plant. The optimal coagulation condition was determined in this study. Under the optimal condition, removals of chemical oxygen demand, light absorbing substances (at 254 nm), total nitrogen, color and turbidity were 68.42%, 69.01%, 44.14%, 92.31% and 87.44%, respectively. Much of the refractory organic matter with relatively high molecular weight, aromaticity and humification degree was removed, and effluent had a lower molecular weight than raw NF concentrated leachate. Study also found that some parts of high molecular weight compounds from NF CL were removed by coagulation process, but the change of distribution of molecular weight was not outstanding. The NF concentrated leachate, both before and after coagulation, contained a large amount of chloride. Hence, a follow-up study should be conducted to find an effective additional processing that can remove organic matter using the high concentration of chloride in the NF concentrated leachate coagulation effluent. This study provides a theoretical basis for the treatment of concentrated leachate from MSW incineration power plants.