U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Influence of different yeast cell wall preparations and their components on performance and immune and metabolic pathways in Clostridium perfringens-challenged broiler chicks

Mohammed M Hashim, Ryan J Arsenault, James A Byrd, Michael H Kogut, Morouj Al-Ajeeli, Christopher A Bailey
Poultry science 2018 v.97 no.1 pp. 203-210
Clostridium perfringens, beta-glucans, biochemical pathways, body weight, broiler chickens, broiler feeding, brooders, cell walls, chicks, cytosol, duodenum, enzymes, infectious bursal disease, jejunum, peptides, starter diets, vaccines, weight gain, yeasts
A study was conducted to evaluate the influence of the purification of yeast cell wall (YCW) preparations on broiler performance and immunogenic and metabolic pathways under microbial challenge. A total of 240 (day old) chicks were distributed among two battery brooder units (48 pens; 5 birds/pen; 8 replicates/treatment). A basal starter diet was divided into 5 batches to create 6 dietary treatments; non-challenge (NCh-C) and challenge (Ch-C) controls, semi-purified YCW containing cytosol contents (SPYCW; 250 mg/kg), purified YCW (PYCW; 250 mg/kg), 50% purified beta-glucan (BG; 130 mg/kg), and 99.9% purified mannan-oligosaccharide (MOS; 53 mg/kg). All birds were immunocompromised with infectious bursal disease vaccine (10× the recommended dose) on day 10 and then all birds except NCh-C birds were challenged with Clostridium perfringens (Cp) (10⁷ cfu/mL) via oral gavage on days 16 and 17. On day 21, tissue samples were collected from the jejunum and duodenum for analysis with chicken-specific, peptide arrays to study the influence of YCW supplementation on immune and metabolic kinase pathways. On day 16, SPYCW had significantly lower body weight (BW) and weight gain (WG) than other treatments except BG (P < 0.05). The productivity index (PI) was lower in SPYCW and BG than in NCh-C, Ch-C, and PYCW. On day 21, after the Cp challenge, NCh-C was higher than Ch-C, SPYCW, and BG in BW, WG, and PI (P = 0.03). The PI of PYCW was similar to NCh-C. The addition of purified YCW to the starter broiler diets influenced the immune and metabolic pathways in the gut. A total of 459 and 367 peptides in the duodenum and jejunum, respectively, were changed due to the Cp challenge. The YCW treatments had different degrees of influence on these peptides for both the duodenum and jejunum. These results suggest that relative purification of YCW and specific fractions of the YCW can influence broiler performance differently during microbial challenges and can alleviate the impact of these stressors.