Main content area

New trends in Passiflora L. pollen grains: morphological/aperture aspects and wall layer considerations

Richardo, Jaiana, Silvério, Adriano
Protoplasma 2019 v.256 no.4 pp. 923-939
Neotropics, Passiflora, cluster analysis, exine, natural history, palynology, phylogeny, pollen, pollinators, ultrastructure, South America
Passifloraceae shows a huge variability of pollen wall characteristics, most still little described. Passiflora is the largest genus with about 580 species with tropical distribution. Few studies in palynological approaches have described the intine layer which can fill existent gaps. Passiflora L. present four subgenera, from which Passiflora, Astrophea, and Decaloba were described in this study. The pollen wall variations were poorly studied, with the objective of describing the morphological and histochemical structure of Passiflora sporoderm that occurs in South America, aims to supply more pollen wall characters in some contexts. Besides the inference of evolutive trends, we described the number of apertures, type, reticule, and variations of the morphology and sporoderm and we related them with possible evolutive trends for the group. As a result, the pollen grains were not far from the patterns found by the literature, with exceptions. The species of the subgenus Passiflora have fused colpi, varying from 6 to 12 colpi, with type 2-reticulate exine. The species of the subgenus Astrophea have colporus and the species of Decaloba varied as the type of aperture, in which a new type of exine to be considered was found: the type 3. The subgenus Passiflora showed the thickest intine, slim endexine, and absent foot layer. While the species that belong to the other subgenera present a slim intine, the endexine is thick and the foot layer is continuous, among other variable characteristics. The size of the pollen grain seems to be related to the thickness of the intine, and consequently, related to possible pollinators. Through the cluster analysis, we reinforce the affinity of the species to its respective subgenus. To conclude, the analysis of the ultrastructure of the sporoderm and external morphology would be useful for an almost complete interpretation of the variations occurring in the genus, giving more information that the subgenus Passiflora is apomorphic when compared to the other two. The pollen wall characters should be considered on the interpretation of natural history, as well as the phylogenetic relationships of the family, mainly in the Passiflora genus, that has a large number of species distributed across the Neotropical regions.