PubAg

Main content area

Air-processed, large grain perovskite films with low trap density from perovskite crystal engineering for high-performance perovskite solar cells with improved ambient stability

Author:
Ding, Manman, Sun, Leijie, Chen, Xiayan, Luo, Tianyuan, Ye, Tian, Zhao, Chunyan, Zhang, Wenfeng, Chang, Haixin
Source:
Journal of materials science 2019 v.54 no.18 pp. 12000-12011
ISSN:
0022-2461
Subject:
air, encapsulation, engineering, mixing, relative humidity, solar cells
Abstract:
High-performance perovskite solar cell processed in ambient air is a big challenge due to the sensitivity of perovskite films to air. Many defects are generated easily at grain boundaries and in the perovskite films by conventional molecular/ion precursor solution mixing methods (i.e., solution mixing-based method), which restrict its stability in air and photovoltaic performance with most power conversion efficiency less than 15%. In this work, we develop a facile method for air-processed, highly crystalline, quasi-3D perovskite film with large grain size (over 6.6 times bigger than that from control conventional method) and improved ambient air stability by phenylethylammonium (PEA)-doped MA₁₋ₓPEAₓPbI₃ perovskite crystal engineering. Furthermore, benefiting from PEA⁺ doping and crystal engineering, the trap density decreases 50% compared with control. Consequently, with the optimal concentration of PEA doping, the power conversion efficiency increases from 15.6% for conventional solution mixing-based perovskite solar cells to 17.6% for crystal engineering-based ones with significantly improved moisture stability. The perovskite crystal engineering-based solar cells without any encapsulation retain 75% of the initial performance after 30-day storage in ambient air under a relative humidity of 50 ± 10%, and two times faster degradation rate is observed for control, conventional solution mixing-based perovskite solar cells when compared with crystal engineering-based ones.
Agid:
6481110