Main content area

Implementing Climate Change and Associated Future Timber Price Trends in a Decision Support System Designed for Irish Forest Management and Applied to Ireland’s Western Peatland Forests

Lundholm, Anders, Corrigan, Edwin, Nieuwenhuis, Maarten
Forests 2019 v.10 no.3
European Union, bioeconomics, climate, climate change, decision support systems, forest management, forests, harvesting, landscapes, linear programming, market prices, markets, models, peatlands, planning, prediction, profitability, pulpwood, sustainable forestry, wood fibers, Ireland
Research Highlights: Predicting impacts on forest management of Climate Change (CC) and dynamic timber prices by incorporating these external factors in a Forest Management Decision Support System (FMDSS). Background and Objectives: Forest managers must comply with Sustainable Forest Management (SFM) practices, including considering the long-term impacts that CC and the bioeconomy may have on their forests and their management. The aims of this study are: (1) incorporate the effects of CC and Dynamic Prices (DP) in a FMDSS that was developed for Ireland’s peatland forests, (2) analyse the impact of global climate and market scenarios on forest management and forest composition at the landscape level. Materials and Methods: Remsoft Woodstock is a strategic planning decision support system that is widely used for forest management around the world. A linear programming model was developed for Ireland’s Western Peatland forests while using Woodstock. Data from Climadapt, which is an expert-based decision support system that was developed in Ireland, were used to include CC effects on forest productivity and species suitability. Dynamic market prices were also included to reflect the changing demands for wood fibre as part of the European Union (EU) and global effort to mitigate CC. Results: DP will likely have more impact on harvest patterns, volumes, and net present value than CC. Higher assortment prices, especially for pulpwood, stimulate the harvesting of forests on marginal sites and off-set some of the negative CC growth impacts on forest profitability. Conclusions: Incorporating CC and bioeconomy prices in a forest decision support system is feasible and recommendable. Foresters should incorporate the expected global changes in their long-term management planning to mitigate the negative effects that un-informed management decisions can have on the sustainability of their forests.