Main content area

Synthesis and behavior of click cross-linked alginate hydrogels: Effect of cross-linker length and functionality

García-Astrain, Clara, Avérous, Luc
International journal of biological macromolecules 2019 v.137 pp. 612-619
alginates, catalysts, crosslinking, cycloaddition reactions, drug delivery systems, drugs, hydrogels, mechanical properties, models, molecular weight, polyethylene, storage modulus, vanillin
Various bismaleimides and trismaleimides of varying molar masses, chemical architectures and functionalities were explored as cross-linkers for furan-modified alginate chains via Diels-Alder click reactions. An environmentally friendly approach is described for the preparation of hydrogels based on naturally occurring biomacromolecules, without catalysts. The behavior of the resulting polysaccharides-based hydrogels was analyzed in terms of swelling, rheological properties and drug-release efficiency, in connection with potential biomedical applications. The use of the different cross-linkers allows tuning the mechanical properties as well as the pulsatile swelling behavior of the hydrogels. When using trifunctional cross-linkers stiffer hydrogels were formed with high storage modulus whereas the chain length and the composition of the cross-linker clearly influence the swelling of the hydrogel network. In connection with drug delivery applications, release of vanillin as a traceable aromatic biobased model drug was also monitored as a function of hydrogel composition. To the best of our knowledge, for the first-time furan-modified alginates were reacted and studied with polyethylene glycol-based bis or trismaleimides with different molar masses and architectures, resulting in advanced hydrogels with different behavior.