Main content area

Detection of broadleaf weeds growing in turfgrass with convolutional neural networks

Yu, Jialin, Sharpe, Shaun M, Schumann, Arnold W, Boyd, Nathan S
Pest management science 2019 v.75 no.8 pp. 2211-2218
Cynodon dactylon, Oenothera laciniata, Paspalum notatum, aesthetics, broadleaf weeds, data collection, herbicides, issues and policy, learning, neural networks, sprayers, turf grasses, weed control
BACKGROUND: Weed infestations reduce turfgrass aesthetics and uniformity. Postemergence (POST) herbicides are applied uniformly on turfgrass, hence areas without weeds are also sprayed. Deep learning, particularly the architecture of convolutional neural network (CNN), is a state‐of‐art approach to recognition of images and objects. In this paper, we report deep learning CNN (DL‐CNN) models that are remarkably accurate at detection of broadleaf weeds in turfgrasses. RESULTS: VGGNet was the best model for detection of various broadleaf weeds growing in dormant bermudagrass [Cynodon dactylon (L.)] and DetectNet was the best model for detection of cutleaf evening‐primrose (Oenothera laciniata Hill) in bahiagrass (Paspalum notatum Flugge) when the learning rate policy was exponential decay. These models achieved high F₁ scores (>0.99) and overall accuracy (>0.99), with recall values of 1.00 in the testing datasets. CONCLUSION: The results of the present research demonstrate the potential for detection of broadleaf weed using DL‐CNN models for detection of broadleaf weeds in turfgrass systems. Further research is required to evaluate weed control in field conditions using these models for in situ video input in conjunction with a smart sprayer. © 2019 Society of Chemical Industry