Main content area

Nutrient Intake Is Insufficient among Senegalese Urban School Children and Adolescents: Results from Two 24 h Recalls in State Primary Schools in Dakar

Fiorentino, Marion, Landais, Edwige, Bastard, Guillaume, Carriquiry, Alicia, Wieringa, Frank T., Berger, Jacques
Nutrients 2016 v.8 no.10
adolescents, ascorbic acid, blood sampling, calcium, elementary schools, energy intake, folic acid, food and nutrition programs, food intake, food prices, girls, iron, malnutrition, nutrient deficiencies, nutrition education, odds ratio, protein intake, risk factors, school children, urban areas, urbanization, vitamin A, vitamin status, zinc, Senegal
Due to rapid urbanization and high food prices and in the absence of nutrition programs, school children from urban areas in West Africa often have insufficient and inadequate diet leading to nutrient deficiencies that affect their health and schooling performance. Acute malnutrition and micronutrient deficiencies are prevalent in children from primary state schools of Dakar (Senegal). The objectives of the present study were to assess the overall diet of these children, to report insufficient/excessive energy and nutrient intakes and to investigate association between insufficient nutrient intake and micronutrient deficiencies. Children attending urban state primary schools in the Dakar area were selected through a two-stage random cluster sampling (30 schools × 20 children). Dietary intake data were obtained from two 24 h recalls and blood samples were collected from 545 children (aged 5–17 years, 45% < 10 years, 53% girls) and adjusted for intra-individual variability to estimate nutrient usual intakes. Energy intake was insufficient and unbalanced with insufficient contribution of protein and excessive contribution of fat to global energy intake in one third of the children. Proportions of children with insufficient intake were: 100% for calcium, 100% for folic acid, 79% for vitamin A, 69% for zinc, 53% for vitamin C and 46% for iron. Insufficient iron and protein intake were risk factors for iron deficiency (odds ratio, OR 1.5, 2.2). Insufficient zinc intake and energy intake from protein were risk factors for zinc deficiency (OR 1.8, 3.0, 1.7, 2.9). Insufficient iron and vitamin C intake, and insufficient energy intake from protein were risk factors for marginal vitamin A status (OR 1.8, 1.8, 3.3). To address nutritional deficiencies associated with a diet deficient in energy, protein and micronutrients, nutrition education or school feeding programs are needed in urban primary schools of Senegal.