Main content area

Identification of TaPPH-7A haplotypes and development of a molecular marker associated with important agronomic traits in common wheat

Wang, Huiyan, Wang, Shuguang, Chang, Xiaoping, Hao, Chenyang, Sun, Daizhen, Jing, Ruilian
BMC plant biology 2019 v.19 no.1 pp. 296
agronomic traits, alleles, allelic variation, catalytic activity, chlorophyll, chromosome mapping, chromosomes, cultivars, exons, filling period, genetic markers, genomics, grain yield, haplotypes, hydrolases, introns, landraces, leaves, marker-assisted selection, microsatellite repeats, molecular cloning, promoter regions, screening, single nucleotide polymorphism, water stress, wheat
BACKGROUND: Premature senescence of flag leaf severely affects wheat yield and quality. Chlorophyll (Chl) degradation is the most obvious symptom during leaf senescence and catalyzed by a series of enzymes. Pheophytin pheophorbide hydrolase (Pheophytinase, PPH) gene encodes a Chl degradation hydrolase. RESULTS: In this study, the coding, genomic and promoter sequences of wheat TaPPH-A gene were cloned. The corresponding lengths were 1467 bp, 4479 bp and 3666 bp, respectively. Sequence structure analysis showed that TaPPH-A contained five exons and four introns. After the multiple sequences alignment of TaPPH-A genome from 36 accessions in a wheat diversity panel, four SNPs and one 2-bp InDel were observed, which formed two haplotypes, TaPPH-7A-1 and TaPPH-7A-2. Based on the SNP at 1299 bp (A/G), a molecular marker TaPPH-7A-dCAPS was developed to distinguish allelic variation (A/G). Using the molecular markers, 13 SSR, and 116 SNP markers, a linkage map of chromosome 7A were integrated. TaPPH-A was mapped on the chromosome region flanked by Xwmc9 (0.94 cM) and AX-95634545 (1.04 cM) on 7A in a DH population. Association analysis between TaPPH-7A allelic variation and agronomic traits found that TaPPH-7A was associated with TGW in 11 of 12 environments and Chl content at grain-filling stage under drought stress using Population 1 consisted of 323 accessions. The accessions possessed TaPPH-7A-1 (A) had higher TGW and Chl content than those possessed TaPPH-7A-2 (G), thus TaPPH-7A-1 (A) was a favorable allelic variation. By analyzing the frequency of favorable allelic variation TaPPH-7A-1 (A) in Population 2 with 157 landraces and Population 3 with 348 modern cultivars, we found it increased from pre-1950 (0) to 1960s (54.5%), then maintained a relatively stable level about 56% from 1960s to 1990s. CONCLUSION: These results suggested the favorable allelic variation TaPPH-7A-1 (A) should be valuable in enhancing grain yield by improving the source (chlorophyll content) and sink (the developing grain) simultaneously. Furthermore, the newly developed molecular marker TaPPH-7A-dCAPS could be integrated into a breeding kit of screening high TGW wheat for marker-assisted selection.