Main content area

Understanding Human Physiological Limitations and Societal Pressures in Favor of Overeating Helps to Avoid Obesity

Borer, Katarina T.
Nutrients 2019 v.11 no.2
body fat, diabetes, dietary carbohydrate, energy, exercise, food intake, genetic predisposition to disease, glucose, glycogen, humans, hunger, hypertension, ideal body weight, insulin resistance, insulin secretion, issues and policy, metabolism, mortality, nutrients, nutrition risk assessment, obesity, overeating, sedentary lifestyle, table salt, weight control, United States
Fat gain in our United States (US) environment of over-abundant, convenient, and palatable food is associated with hypertension, cardiovascular disease, diabetes, and increased mortality. Fuller understanding of physiological and environmental challenges to healthy weight maintenance could help prevent these morbidities. Human physiological limitations that permit development of obesity include a predilection to overeat palatable diets, inability to directly detect energy eaten or expended, a large capacity for fat storage, and the difficulty of losing body fat. Innate defenses resisting fat loss include reduced resting metabolism, increased hunger, and high insulin sensitivity, promoting a regain of fat, glycogen, and lean mass. Environmental challenges include readily available and heavily advertised palatable foods, policies and practices that make them abundant, less-than-ideal recommendations regarding national dietary macronutrient intake, and a frequently sedentary lifestyle. After gaining excess fat, some metabolic burdens can be mitigated though thoughtful selection of nutrients. Reduced dietary salt helps lower hypertension, less dietary sugar lowers risk of cardiovascular disease and obesity, and reducing proportion of dietary carbohydrates lowers post-meal insulin secretion and insulin resistance. Food intake and exercise should also be considered thoughtfully, as exercise in a fasted state and before the meals raises glucose intolerance, while exercising shortly after eating lowers it. In summary, we cannot directly detect energy eaten or expended, we have a genetic predisposition to eat palatable diets even when not hungry, and we have a large capacity for fat storage and a difficult time permanently losing excess fat. Understanding this empowers individuals to avoid overeating and helps them avoid obesity.