Main content area

Functional characterization of purinergic receptor P2Y14 in the Japanese flounder (Paralichthys olivaceus) head kidney macrophages

Li, Shuo, Wang, Nan, Feng, Yu, Li, Jiafang, Geng, Xuyun, Sun, Jinsheng
Fish & shellfish immunology 2019 v.93 pp. 200-207
Paralichthys olivaceus, agonists, flounder, gene expression, gene expression regulation, genes, immune response, inflammation, innate immunity, interleukin-1beta, kidneys, macrophages, messenger RNA, mitogen-activated protein kinase, nucleotides, phosphorylation, purinergic receptors, small interfering RNA, sugars
Extracellular nucleotides and nucleotide sugars are important danger-associated signaling molecules that play critical roles in regulation of immune responses in mammals through activation of purinergic receptors located on the cell surface. However, the immunological role of extracellular UDP-glucose-activated P2Y14 receptor (P2Y14R) in fish still remains unknown. In this study, we identified and characterized a P2Y14R paralog in the Japanese flounder (Paralichthys olivaceus). The mRNA transcripts of P2Y14R are detected in all examined Japanese flounder tissues. Compared with the UDP-activated P2Y6 receptor, however, P2Y14R gene is highly expressed in Japanese flounder head kidney macrophages (HKMs). In addition, P2Y14R is significantly upregulated following inflammatory stimulation with LPS and poly (I:C) in the HKMs, suggesting a role of P2Y14R in response to inflammation in fish. Furthermore, activation of P2Y14 receptor with its potent and selective agonist MRS 2905 resulted in a decreased expression of LPS-induced pro-inflammatory cytokine IL-1beta gene in the HKMs. In contrast, inhibition of P2Y14 receptor activity or down-regulation of the endogenous expression of P2Y14R by small interfering RNA significantly upregulates the LPS-induced pro-inflammatory cytokine IL-1beta gene expression in the HKMs, demonstrating that P2Y14R is involved in inflammation regulation in fish. Moreover, stimulation of the Japanese flounder HKMs with UDP-glucose evoked a rapid increase of extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in a dose- and time-dependent manner, indicating the involvement of P2Y14R in activation of ERK1/2 signaling in fish immune cells. Taken together, we demonstrated that the inducible P2Y14R plays an important role in regulation of fish innate immunity.