Main content area

Effects of indirect indicators of udder health on nutrient recovery and cheese yield traits in goat milk

Stocco, Giorgia, Pazzola, Michele, Dettori, Maria L., Paschino, Pietro, Summer, Andrea, Cipolat-Gotet, Claudio, Vacca, Giuseppe M.
Journal of dairy science 2019 v.102 no.10 pp. 8648-8657
casein, cattle, cheesemaking, dairy goats, economic valuation, energy, farms, financial economics, flocks, fresh cheeses, glass, goat milk, lactation, lactose, milk, milk fat, nutrients, pH, plate count, protein content, somatic cell count, statistical models, total solids, udders
In dairy goats, very little is known about the effect of the 2 most important indirect indicators of udder health [somatic cell count (SCC) and total bacterial count (TBC)] on milk composition and cheese yield, and no information is available regarding the effects of lactose levels, pH, and NaCl content on the recovery of nutrients in the curd, cheese yield traits, and daily cheese yields. Because large differences exist among dairy species, conclusions from the most studied species (i.e., bovine) cannot be drawn for all types of dairy-producing animals. The aims of this study were to quantify, using milk samples from 560 dairy goats, the contemporary effects of a pool of udder health indirect indicators (lactose level, pH, SCC, TBC, and NaCl content) on the recovery of nutrients in the curd (%REC), cheese yield (%CY), and daily cheese yields (dCY). Cheese-making traits were analyzed using a mixed model, with parity, days in milk (DIM), lactose level, pH, SCC, TBC, and NaCl content as fixed effects, and farm, breed, glass tube, and animal as random effects. Results indicated that high levels of milk lactose were associated with reduced total solids recovery in the curd and lower cheese yields, because of the lower milk fat and protein contents in samples rich in lactose. Higher pH correlated with higher recovery of nutrients in the curd and higher cheese yield traits. These results may be explained by the positive correlation between pH and milk fat, protein, and casein in goat milk. High SCC were associated with higher recovery of solids and energy in the curd but lower recovery of protein. The higher cheese yield obtained from milk with high SCC was due to both increased recovery of lactose in the curd and water retention. Bacterial count proved to be the least important factor affecting cheese-making traits, but it decreased daily cheese yields, suggesting that, even if below the legal limits, TBC should be considered in order to monitor flock management and avoid economic losses. The effect of NaCl content on milk composition was linked with lower recovery of all nutrients in the curd during cheese-making. In addition, high milk NaCl content led to reductions in fresh cheese yield and cheese solids. The indirect indicators of the present study significantly affected the cheese-making process. Such information should be considered, to adjust the milk-to-cheese economic value and the milk payment system.