Main content area

White-light emission of single carbon dots prepared by hydrothermal carbonization of poly(diallyldimethylammonium chloride): Applications to fabrication of white-light-emitting films

Madhu, Manivannan, Chen, Tzu-Heng, Tseng, Wei-Lung
Journal of colloid and interface science 2019 v.556 pp. 120-127
Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, aqueous solutions, carbon quantum dots, color, composite films, composite materials, emissions, hydrothermal carbonization, light emitting diodes, microwave treatment, moieties, nitrogen, particle size, photoluminescence, polyvinyl alcohol, quaternary ammonium compounds, synthesis, temperature, ultraviolet radiation, white light, zeta potential
Different-sized carbon dots (CDs) with full-color emissions have immerse potentials as a novel class of light source in the field of light-emitting diodes (LED). However, few studies have been devoted to the development of the one-step process for preparing white-light-emitting CDs (WLECDs). Herein, we present a facile and one-pot synthesis of the WLECDs through microwave-assisted hydrothermal carbonization of poly(diallyldimethylammonium chloride) (PDDA). The as-synthesized WLECDs had a round shape with a mean particle size of 2.22 nm and their zeta potential reached up to 47 mV. Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy revealed the appearance of nitrogen and oxygen-containing functional groups on the CD surface, generating many surface state emissive traps. Additionally, photoluminescence spectroscopy showed that the CDs exhibited excitation-dependent surface-state emission and excitation-independent core-state emission. When excited at 350 nm, an aqueous solution of the WLECDs emitted white light with an absolute quantum yield of 11% and a correlated color temperature of 5999 K at Commission International de l'Eclairage (CIE) coordinates of (0.321, 0.348). Single-particle photoluminescence spectroscopy demonstrated that the WLECDs still possessed broadband white-light emission from 400 to 800 nm at a single particle level. Furthermore, a white-light-emitting polymer composite film excited by 365-nm UV light was fabricated by embedding the WLECDs into a polyvinyl alcohol matrix. This flexible solid-state film showed a correlated color temperature of 7023 K at CIE coordinates of (0.303, 0.332) and. Given that the WELCDs have highly positive charges, the fabrication of a white-light-illuminating film was successfully conducted by layer-by-layer assembly of the WELCD and poly(4-styrenesulfonic acid).