PubAg

Main content area

Antifouling and antibacterial evaluation of ZnO/MWCNT dual nanofiller polyethersulfone mixed matrix membrane

Author:
Pang, Wen Yu, Ahmad, Abdul Latif, Zaulkiflee, Nur Dina
Source:
Journal of environmental management 2019
ISSN:
0301-4797
Subject:
antibacterial properties, antifouling activities, carbon nanotubes, contact angle, filtration, humic acids, hydrophilicity, mixing, models, porosity, scanning electron microscopy, synergism, zinc oxide
Abstract:
The aim of this study is to evaluate the performance and antifouling properties of polyethersulfone (PES) membrane incorporated with dual nanofiller, zinc oxide (ZnO) and multi-walled carbon nanotube (MWCNT). The synergistic effect of the these nanofillers in PES membrane is studied by blending different ratio of ZnO/MWCNT nanofiller into the PES membrane. The fabricated membranes were characterized in terms of cross-section and surface morphology, surface hydrophilicity, pore size and porosity. The filtration performance of the membranes was tested using 50 mg/L humic acid (HA) solution as model solution. SEM image and gravimetric evaluation reported that the incorporation of both MWCNT and ZnO into the PES membrane improved porosity significantly up to 46.02%. Lower water contact angle of PES membrane incorporated with equal ratio of MWCNT and ZnO (PES 3) revealed that it has neat PES membrane properties and more hydrophilic membrane surface than single filler. PES 3 outperform other membranes with excellent HA permeate flux of 40.00 L/m2.h and rejection of 88.51%. Due to hydrophilic membrane surface, PES 3 membrane demonstrate efficient antifouling properties with lower relative flux reduction (RFR) and higher flux recovery ratio (FRR). PES 3 also showed notable antibacterial properties with less bacterial attached to the membrane compared to neat PES membrane (PES 0).
Agid:
6570220