PubAg

Main content area

Major histocompatibility complex class I (MHC Iα) of Japanese flounder (Paralichthys olivaceus) plays a critical role in defense against intracellular pathogen infection

Author:
Wang, Bo, Du, He-he, Huang, Hui-qin, Xian, Jian-an, Xia, Zhi-hui, Hu, Yong-hua
Source:
Fish & shellfish immunology 2019 v.94 pp. 122-131
ISSN:
1050-4648
Subject:
Edwardsiella tarda, Paralichthys olivaceus, antigen presentation, antigens, bacteria, bioactive properties, flounder, immune response, major histocompatibility complex, pathogens, proteins
Abstract:
The major histocompatibility complex (MHC) is a highly polymorphic region of the vertebrate genome that plays a critical role in initiating immune responses towards invading pathogens. It is well known that MHC I molecules play a central role in the immune response to viruses. However, rare literatures were reported the role of MHC I in the resistance to intracellular bacteria. Sequences of MHC Iα were identified in multiple teleost species, including Japanese flounder (Paralichthys olivaceus), however, the immunological function of MHC Iα remain largely unknown. In this study, we examined the expression profile and biological activity of an MHC Iα homologue, PoMHC Iα, from P. olivaceus. Structural analysis showed that PoMHC Iα possesses conserved structural characteristics of MHC Iα proteins, including MHC_I domain, IGc1 domain, transmembrane region. Expression of PoMHC Iα was upregulated in a time-dependent manner by extracellular and intracellular bacterial pathogens and viral pathogen infection. Different expression patterns were exhibited in response to the infection of different types of microbial pathogens in different immune tissues. Recombinant PoMHC Iα increased the capability of host cells to defense against intracellular pathogen Edwardsiella tarda infection and enhanced the expression of immune related genes. The knockdown of PoMHC Iα attenuated the ability of cells to eliminate E. tarda, which was sustained by the in vivo results that overexpression of PoMHC Iα promoted the host defense against invading E. tarda. Antigen uptake assay indicated PoMHC Iα participated in cells antigen presentation. Collectively, this study is the first report that MHC Iα plays an important role in immune defense against intracellular bacterial pathogen in teleost. Taken together, these findings add new insights into the biological function of teleost MHC Iα and emphasize the importance of MHC I gene products for the control of E. tarda infection.
Agid:
6629601