U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

RNase activity decreases following a heat shock in wheat leaves and correlates with its posttranslational modification

Author:
Chang, S.C., Gallie, D.R.
Source:
Plant physiology 1997 v.113 no.4 pp. 1253-1263
ISSN:
0032-0889
Subject:
Triticum aestivum, seedlings, leaves, heat stress, ribonucleases, isozymes, phosphorylation, enzyme activity, measurement, messenger RNA, gene expression, stress response
Abstract:
Heat shock results in a coordinate loss of translational efficiency and an increase in mRNA stability in plants. The thermally mediated increase in mRNA half-life could be a result of decreased expression and/or regulation of intracellular RNase enzyme activity. We have examined the fate of both acidic and neutral RNases in wheat seedlings that were subjected to a thermal stress. We observed that the activity of all detectable RNases decreased following a heat-shock, which was a function of both the temperature and length of the heat shock. In contrast, no reduction in nuclease activity was observed following any heat-shock treatment. Antibodies raised against one of the major RNases was used in western analysis to demonstrate that the RNase protein level did not decrease following a heat shock, and the data suggest that the observed decrease in RNase activity in heat-shocked leaves may be due to modification of the protein. Two-dimensional gel/western analysis of this RNase revealed three isoforms. The most acidic isoform predominated in control leaves, whereas the most basic isoform predominated in leaves following a heat shock and correlated with the heat-shock-induced reduction in RNase activity and increase in mRNA half-life. These data suggest that RNase activity may be regulated posttranslationally following heat shock as a means to reduce RNA turnover until recovery ensues.
Agid:
664869