Main content area

Does decrease in ribulose-1,5-bisphosphate carboxylase by antisense RbcS lead to a higher N-use efficiency of photosynthesis under conditions of saturating CO2 and light in rice plants?

Makino, A., Shimada, T., Takumi, S., Kaneko, K., Matsuoka, M., Shimamoto, K., Nakano, H., Miyao-Tokutomi, M., Mae, T., Yamamoto, N.
Plant physiology 1997 v.114 no.2 pp. 483-491
Oryza sativa, leaves, photosynthesis, net assimilation rate, temperature, light intensity, protein composition, nitrogen content, ribulose-bisphosphate carboxylase, enzyme activity, kinetics, nitrogen, genetic transformation, antisense DNA, genes, gene transfer, transgenic plants, carbon dioxide
Rice (Oryza sativa L.) plants with decreased ribulose-1,5-bisphosphate carboxylase (Rubisco) were obtained by transformation with the rice rbcS antisense gene under the control of the rice rbcS promoter. The primary transformants were screened for the Rubisco to leaf N ratio, and the transformant with 65% wild-type Rubisco was selected as a plant set with optimal Rubisco content at saturating CO2 partial pressures for photosynthesis under conditions of high irradiance and 25 degrees C. This optimal Rubisco content was estimated from the amounts and kinetic constants of Rubisco and the gas-exchange data. The R1 selfed progeny of the selected transformant were grown hydroponically with different N concentrations. Rubisco content in the R1 population was distributed into two groups: 56 plants had about 65% wild-type Rubisco, whereas 23 plants were very similar to the wild type. Although the plants with decreased Rubisco showed 20% lower rates of light-saturated photosynthesis in normal air (36Pa CO2), they had 5 to 15% higher rates of photosynthesis in elevated partial pressures of CO2 (100-115 Pa CO2) than the wild-type plants for a given leaf N content. We conclude that the rice plants with 65% wild-type Rubisco show a higher N-use efficiency of photosynthesis under conditions of saturating CO2 and high irradiance.