U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Subcellular localization of secondary lipid metabolites including fragrance volatiles in carnation petals

Hudak, K.A., Thompson, J.E.
Plant physiology 1997 v.114 no.2 pp. 705-713
volatile compounds, hexanoic acid, corolla, radiolabeling, odors, linoleate 13S-lipoxygenase, cytosol, biochemical pathways, cell membranes, Dianthus caryophyllus, chemical constituents of plants, protein content, metabolites, phospholipids
Pulse-chase labeling of carnation (Dianthus caryophyllus L. cv Improved White Sim) petals with [14C]acetate has provided evidence for a hydrophobic subcompartment of lipid-protein particles within the cytosol that resemble oil bodies, are formed by blebbing from membranes, and are enriched in lipid metabolites (including fragrance volatiles) derived from membrane fatty acids. Fractionation of the petals during pulse-chase labeling revealed that radiolabeled fatty acids appear first in microsomal membranes and subsequently in cytosolic lipid-protein particles, indicating that the particles originate from membranes. This interpretation is supported by the finding that the cytosolic lipid-protein particles contain phospholipid as well as the same fatty acids found in microsomal membranes. Radiolabeled polar lipid metabolites (methanol/ water-soluble) were detectable in both in situ lipid-protein particles isolated from the cytosol and those generated in vitro from isolated radiolabeled microsomal membranes. The lipid-protein particles were also enriched in hexanal, trans-2-hexenal, 1-hexanol, 3-hexen-1-ol, and 2-hexanol, volatiles of carnation flower fragrance that are derived from membrane fatty acids through the lipoxygenase pathway. Therefore, secondary lipid metabolites, including components of fragrance, appear to be formed within membranes of petal tissue and are subsequently released from the membrane bilayers into the cytosol by blebbing of lipid-protein particles.