U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Dissecting the diphenylene lodonium-sensitive NAD(P)H: quinone oxidoreductase of zucchini plasma membrane

Trost, P., Foscarini, S., Preger, V., Bonora, P., Vitale, L., Pupillo, P.
Plant physiology 1997 v.114 no.2 pp. 737-746
dose response, hypocotyls, NADP (coenzyme), oxidoreductases, Cucurbita pepo, enzyme inhibitors, binding sites, etiolation, plasma membrane, enzyme activity, protein composition
Quinone oxidoreductase activities dependent on pyridine nucleotides are associated with the plasma membrane (PM) in zucchini (Cucurbita pepo L.) hypocotyls. In the presence of NADPH, lipophilic ubiquinone homologs with up to three isoprenoid units were reduced by intact PM vesicles with a Km of 2 to 7 micromolars. Affinities for both NADPH and NADH were similar (Km of 62 and 51 micromolars, respectively). Two NAD(P)H:quinone oxidoreductase forms were identified. The first, labeled as peak I in gel-filtration experiments, behaves as an intrinsic membrane complex of about 300 kD, it slightly prefers NADH over NADPH, it is markedly sensitive to the inhibitor diphenylene iodonium, and it is active with lipophilic quinones. The second form (peak II) is an NADPH-preferring oxidoreductase of about 90 kD, weakly bound to the PM. Peak II is diphenylene iodonium-insensitive and resembles, in many properties, the soluble NAD(P)H:quinone oxidoreductase that is also present in the same tissue. Following purification of peak I, however, the latter gave rise to a quinone oxidoreductase of the soluble type (peak II), based on substrate and inhibitor specificities and chromatographic and electrophoretic evidence. It is proposed that a redox protein of the same class as the soluble NAD(P)H:quinone oxidoreductase (F. Sparla, G. Tedeschi, and P. Trost [1996] Plant Physiol. 112:249-258) is a component of the diphenylene iodonium-sensitive PM complex capable of reducing lipophilic quinones.