U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

Effects of elevated temperature and sedimentation on grazing rates of the green sea urchin: implications for kelp forests exposed to increased sedimentation with climate change

Author:
Sarah B. Traiger
Source:
Helgoland marine research 2019 v.73 no.1 pp. 5
ISSN:
1438-387X
Subject:
Strongylocentrotus droebachiensis, Strongylocentrotus nudus, ambient temperature, climate change, grazing, macroalgae, macroinvertebrates, melting, sediment yield, sedimentation rate, sediments, species diversity, water temperature, Alaska
Abstract:
Sea urchin grazing rates can strongly impact kelp bed persistence. Elevated water temperature associated with climate change may increase grazing rates; however, these effects may interact with local stressors such as sedimentation, which may inhibit grazing. In Alaska, glacial melt is increasing with climate change, resulting in higher sedimentation rates, which are often associated with lower grazer abundance and shifts in macroalgal species composition. The short-term effects of elevated temperature and sediment on grazing were investigated for the green sea urchin, Strongylocentrotus droebachiensis (O.F. Müller, 1776), in Kachemak Bay, Alaska (59° 37′ 45.00″ N, 151° 36′ 38.40″ W) in early May 2017. Feeding assays were conducted at ambient temperature (6.9–9.8 °C) and at 13.8–14.6 °C with no sediment and under a high sediment load. Grazing rates significantly decreased in the presence of sediment, but were not significantly affected by temperature. Along with sediment impacts on settlement and post-settlement survival, grazing inhibition may contribute to the commonly observed pattern of decreased macroinvertebrate grazer abundance in areas of high sedimentation and increased sedimentation in the future may alter sea urchin grazing in kelp forests.
Agid:
6657064