Main content area

Tackling environmental challenges in pollution controls using artificial intelligence: A review

Ye, Zhiping, Yang, Jiaqian, Zhong, Na, Tu, Xin, Jia, Jining, Wang, Jiade
The Science of the total environment 2020 v.699 pp. 134279
algorithms, early warning systems, fuzzy logic, monitoring, neural networks, pollutants, pollution, pollution control, prediction, recycling, solid wastes, synergism, wastewater, wastewater treatment
This review presents the developments in artificial intelligence technologies for environmental pollution controls. A number of AI approaches, which start with the reliable mapping of nonlinear behavior between inputs and outputs in chemical and biological processes in terms of prediction models to the emerging optimization and control algorithms that study the pollutants removal processes and intelligent control systems, have been developed for environmental clean-ups. The characteristics, advantages and limitations of AI methods, including single and hybrid AI methods, were overviewed. Hybrid AI methods exhibited synergistic effects, but with computational heaviness. The up-to-date review summarizes i) Various artificial neural networks employed in wastewater degradation process for the prediction of removal efficiency of pollutants and the search of optimizing experimental conditions; ii) Evaluation of fuzzy logic used for intelligent control of aerobic stage of wastewater treatment process; iii) AI-aided soft-sensors for precisely on-line/off-line estimation of hard-to-measure parameters in wastewater treatment plants; iv) Single and hybrid AI methods applied to estimate pollutants concentrations and design monitoring and early-warning systems for both aquatic and atmospheric environments; v) AI modelings of short-term, mid-term and long-term solid waste generations, and various ANNs for solid waste recycling and reduction. Finally, the future challenges of AI-based models employed in the environmental fields are discussed and proposed.