U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Photohydroionization Reduces Shiga Toxin-Producing Escherichia coli and Salmonella on Fresh Beef with Minimal Effects on Meat Quality

Xiang Yang, Norasak Kalchayanand, Keith E. Belk, Tommy L. Wheeler
Meat and muscle biology 2019 v.3 no.1 pp. 105-115
Salmonella, Shiga toxin-producing Escherichia coli, adverse effects, antimicrobial properties, bacterial contamination, beef, beef quality, cold storage, color, energy efficiency, exposure duration, food pathogens, ionization, lipid peroxidation, nonthermal processing, oxidants, rancidity, raw meat, thiobarbituric acid-reactive substances, tissues, ultraviolet radiation
The photohydroionization (PHI) technology utilizes a combination of UV light and low-level oxidizers to produce antimicrobial action, and thus, is a potential intervention to control pathogen contamination on surface of fresh beef. The objectives of the study were 1) to evaluate the effect of PHI on reduction of selected Escherichia coli (E. coli) O157:H7, non-O157 Shiga toxin-producing E. coli (STEC; O26, O45, O103, O111, O121, O145), antimicrobial resistant (AMR) and non-AMR Salmonella strains inoculated on beef flanks, and 2) to evaluate the effect of PHI treatment on the lean color and lipid oxidation of beef during refrigerated storage. Inoculated beef flanks were exposed to PHI treatment for 0 (control), 15, 30, or 60 s at 4°C. Exposure to PHI for 15 s reduced (P ≤ 0.05) pathogens on the surface of fresh beef ranging from 0.3 to 0.9 log CFU/cm². Increasing the exposure time to 60 s did not improve (P > 0.05) reductions over 15 s for the majority of the selected pathogens, but yielded pathogen reductions ranging from 0.5 to 1.1 log CFU/cm². Over all storage times when beef samples were exposed to PHI for 75 s, no difference (P > 0.05) was detected on lean a* value (24.67 versus 24.95), of treated and control fresh beef tissues, respectively. The highest TBARS values after storage for 14 d at 4°C was 0.33 mg MDA/kg of meat indicating that no oxidative rancidity occurred for treated beef samples. The PHI technology with 15 to 75 s exposure time was effective in controlling STEC and Salmonella contaminated on surface of fresh beef without causing adverse effects on fresh beef quality while reducing water and energy use. Further study of PHI treatment parameters under commercial plant conditions and ultimate validation of those parameters will be necessary for commercial implementation.