U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

Integrated pest management of plant sucking bugs (Hemiptera: Miridae) in Australian cotton: back to the future

Author:
Richard V. Sequeira
Source:
Bulletin of entomological research 2019 v.109 no.5 pp. 561-573
ISSN:
1475-2670
Subject:
Bacillus thuringiensis, Creontiades dilutus, Gossypium hirsutum, cotton, cotton industry, economic threshold, environmental factors, fruits, gender, growing season, guidelines, host plants, insect pests, integrated pest management, models, plant protection, surveys, transgenic plants, Australia
Abstract:
Creontiades dilutus (green mirid) and C. pacificus (brown mirid) are major hemipteran pests of transgenic (Bt) cotton in Australia. Current integrated pest management (IPM) guidelines for mirids in Australian cotton, based on economic thresholds and sampling recommendations, were developed and disseminated to industry at the start of the 2005–06 growing season and have remained largely unchanged since then. However, adoption of mirid IPM guidelines by industry has been highly variable and generally well below expectation. Annual surveys of crop protection practices across the Australian cotton industry, from 2010 to 2017, indicate that a third of all mirid sprays are applied below the recommended thresholds each year. More than half of all survey respondents in the 2017 survey indicated lack of confidence in the mirid thresholds due to highly variable and disproportionate damage, a phenomenon best described as the ‘mirid enigma’. A critical review of RD&E outputs since 1998 shows that potential contributors to the mirid enigma include but are not limited to biological, ecological and methodological factors. Mirid feeding damage is likely to vary with developmental stage, gender and reproductive status. Ecological factors including trophic effects and multiple host plant usage are potential modifiers of mirid feeding damage. Methodological and technological constraints and shortcomings are evident in the threshold research done to date. Inadequate commercial sampling that results in unreliable estimates of pest density in the crop is a major contributor to the mirid enigma. Failure to account for the complexity of factors that can influence the nature and severity of mirid damage to cotton often results in fruit loss due to non-mirid related factors being incorrectly attributed to mirids. An alternative approach to mirid management based on modelling the dynamics of net fruit load (production–loss) proposed over 15 years ago is discussed.
Agid:
6676888