Main content area

Comparative vessel anatomy of Arctic deciduous and evergreen dicots

Gorsuch, D.M., Oberbauer, S.F., Fisher, J.B.
American journal of botany 2001 v.88 no.9 pp. 1643-1649
height, plant characteristics, Magnoliopsida, plant anatomy, phenology, leaves, climate change, xylem, freeze-thaw cycles, length, plant morphology, plant communities, plant vascular system, species differences, biological resistance, Alaska, Arctic region
Arctic tundra plant species exhibit striking variation in leaf character and growth form. Both are likely related to differences in vessel anatomy, and all may affect responses to climate changes in the Arctic. To investigate the relationships among leaf character, growth form, vessel anatomy, and susceptibility to freeze-thaw-induced xylem cavitation, xylem vessel characteristics were compared among six deciduous and six evergreen arctic dicot species of erect and prostrate growth forms. We hypothesized that deciduous and erect species would have larger and longer vessels than evergreen and cushion/mat-forming species. Vessel lengths, diameters, and densities were measured for each species. Theoretical vessel flow rates were calculated using Poiseuille's law for ideal capillaries. Flow rates were used to determine the susceptibility of vessels to cavitation induced by freeze-thaw events that may become more frequent with global warming. Vessel diameters were larger in deciduous species compared to evergreens, and in shrubs/trees vs. cushion/mat-forming plants. Vessel length distributions, however, did not differ for growth form or leaf character. Vessel density was greater in cushion/mat-forming species than in shrub/tree species. Deciduous plants showed a greater contribution to total conductivity by relatively larger vessels than evergreens. One of the deciduous species, Vaccinium uliginosum, is predicted to be susceptible to freeze-thaw-induced cavitation. These results have important implications for future arctic species composition and plant community structure.