Main content area

Transcriptome analysis of hemocytes from the white shrimp Litopenaeus vannamei with the injection of dopamine

Wei, Cun, Pan, Luqing, Zhang, Xin, Xu, Lijun, Si, Lingjun, Tong, Ruixue, Wang, Hongdan
Fish & shellfish immunology 2019 v.94 pp. 497-509
Litopenaeus vannamei, apoptosis, dopamine, endocytosis, gene expression regulation, hemocytes, immune response, immune system, lysosomes, neurosecretory system, phagosomes, quantitative polymerase chain reaction, receptors, shrimp, signal transduction, transcriptome, transcriptomics, unigenes
As a crucial neuroendocrine-immune factor, dopamine (DA) could regulate the immune system of Litopenaeus vannamei. To understand the immune mechanisms and regulatory pathways of DA in L. vannamei, the transcriptome analysis of hemocytes of L. vannamei with injection of DA (10−6 mol/shrimp) at 3 and 12 h were performed in this study. Moreover, quantitative real-time PCR (qPCR) method was applied to validate the accuracy of transcriptome sequencing and analyze the expression pattern of candidate differentially expressed genes (DEGs) at different time points (0, 3, 6, 12, and 24 h) after DA injection. The results showed that a total of 51382 unigenes with a N50 length of 2341 bp were generated. And 1397 and 457 DEGs were obtained by comparative transcriptome at 3 and 12h respectively. Moreover, the results of functional annotation and enriched pathway showed that the DEGs were involved in phagosome (ko04145), lysosome (ko04142), Endocytosis (ko04144), and NOD-like receptor signaling pathway (ko04621). Besides, the Pearson's correlation coefficient (R) between transcriptome sequencing and qPCR was 0.845, which confirmed the reliability of the transcriptome sequencing results and the accuracy of assembly. Furthermore, the expression pattern of 15 candidate DEGs, containing 9 up-regulated and 6 down-regulated DEGs at 3 h, indicated the regulation of DA in physiological functions especially in the immune system. Therefore, these results revealed that DA induced the expressions of membrane receptors or proteins, activated intracellular signaling pathways, regulated cellular and humoral immune systems, controlled antioxidation and apoptosis, and was involved in the regulation of neuroendocrine system. These findings are helpful to promote the understanding on the effects of biogenic amines on physiological functions and regulatory networks of crustacean, and offer a substantial material and foundation for researching the immune response of crustacean.