Main content area

Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system

Frame, B.R., Shou, H., Chikwamba, R.K., Zhang, Z., Xiang, C., Fonger, T.M., Pegg, S.E.K., Li, B., Nettleton, D.S., Pei, D.
Plant physiology 2002 v.129 no.1 pp. 13-22
genetic transformation, Zea mays, food crops, plant development, tillage, transgenic plants, embryo (plant), Agrobacterium radiobacter, transfer DNA, fertilization (reproduction), gene expression, zygote, genes, plant morphology, genetic vectors, beta-glucuronidase, genetic markers
We have achieved routine transformation of maize (Zea mays) using an Agrobacterium tumefaciens standard binary (non-super binary) vector system. Immature zygotic embryos of the hybrid line Hi II were infected with A. tumefaciens strain EHA101 harboring a standard binary vector and cocultivated in the presence of 400 mg L1 L-cysteine. Inclusion of L-cysteine in cocultivation medium lead to an improvement in transient -glucuronidase expression observed in targeted cells and a significant increase in stable transformation efficiency, but was associated with a decrease in embryo response after cocultivation. The average stable transformation efficiency (no. of bialaphos-resistant events recovered per 100 embryos infected) of the present protocol was 5.5%. Southern-blot and progeny analyses confirmed the integration, expression, and inheritance of the bar and gus transgenes in R0, R1, and R2 generations of transgenic events. To our knowledge, this represents the first report in which fertile, stable transgenic maize has been routinely produced using an A. tumefaciens standard binary vector system.