U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Comparison of soil-aggregate crushing-energy meters

Huawei Pi, David R. Huggins, Nicholas P. Webb, Brenton Sharratt
Aeolian research 2020 v.42 pp. 100559
aggregate stability, crop production, crop rotation, crushing, dust emissions, fallow, green manures, no-tillage, oilseeds, soil aggregates, soil amendments, soil types, summer, wind erosion, winter, Northwestern United States
Dry aggregate stability (DAS) is an important factor influencing soil wind erosion, dust emission and crop production. Historically and to the present, DAS has been determined using a horizontal- or vertical-plate crushing meter (Soil-Aggregate Crushing-Energy Meter, hereafter SACEM). The intent of this paper was to compare the performance of horizontal-plate SACEM with a commercial penetrometer (Mohr Digi-Test, hereafter MDT). The performance of both instruments was tested on aggregates collected from various soil types, crop rotations, soil amendments, and tillage systems across the inland Pacific Northwest United States (iPNW). Results indicated no consistently significant difference in DAS measured by the MDT and SACEM. However, there was evidence that SACEM under-estimated or MDT over-estimated DAS by 74 to 368% in measuring the stability of strong aggregates (DAS > 3 J kg⁻¹). Both instruments measured higher DAS for no-tillage summer fallow, winter wheat-summer fallow (WW-SF) rotations, and no green manure treatments compared with other tillage practices, oilseed rotations, and green manure treatments. The SACEM that has historically been used in measuring soil DAS can be replaced by the commercial penetrometer (MDT). Nonetheless, differences in the performance of instruments in measuring the stability of strong aggregates poses risks.