PubAg

Main content area

Analysis on the carbon emission peaks of China's industrial, building, transport, and agricultural sectors

Author:
Chen, Xi, Shuai, Chenyang, Wu, Ya, Zhang, Yu
Source:
The Science of the total environment 2020 v.709 pp. 135768
ISSN:
0048-9697
Subject:
Kuznets curve, United Nations Framework Convention on Climate Change, agricultural industry, carbon, energy, issues and policy, politics, prediction, theoretical models, treaties, China
Abstract:
Carbon emission peak has become a focus of political and academic concern in global community since the launch of Kyoto Protocol. China, as the largest carbon emitter, has committed to reaching the carbon peak by 2030 in Paris Agreement. This ambitious national goal requires the endeavors of individual sectors, particularly those carbon-intensive ones. Predicting the sectoral peaks under current endeavors and understanding driving forces for the carbon emission changes in the past years are substantial for guiding the allocation of the country's future efforts. In the past studies contextualized in China, the prediction of its carbon peaks seldom appeared at the sectoral level, which is considered as a research gap. Therefore, this study predicts the peaks at four carbon pillar sectors (i.e. industrial, building, transport and agricultural sectors) and identifies the driving forces for the carbon emission changes of them. This study hypothesized Carbon Kuznets curve (CKC) as the theoretical model for predicting the peaks and used Logarithmic mean Divisia index (LMDI) as the method to identify the driving forces. The results show that the carbon emission in the country will peak in 2036, six years later than the agreed year. The lateness of the national peak can be attributed to the significant lateness of three pillar sectors' peaks, occurring in 2031 for the industrial sector, 2035 for the building sector, 2043 for the transport sector, peak for the agricultural sector occurs four years earlier in 2026 though. Furthermore, the results show that carbon emission is significantly driven by the booming economic output and inhibited by decreasing energy intensity, but the slight fluctuation of energy structure plays a minor role in the four sectors. Policy adjustments are proposed for effectively and efficiently urging the on-time occurrence of the national peak.
Agid:
6796026