U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Detection and Identification of Phytophthora Species in Southern Italy by RFLP and Sequence Analysis of PCR-amplified Nuclear Ribosomal DNA

Camele, I., Marcone, C., Cristinzio, G.
European journal of plant pathology 2005 v.113 no.1 pp. 1-14
Phytophthora, plant pathogenic fungi, fungal diseases of plants, pathogen identification, restriction fragment length polymorphism, ribosomal DNA, polymerase chain reaction, nucleotide sequences, disease detection, blight, host plants, host range, new geographic records, Italy
In four neighbouring regions of southern Italy, Basilicata, Campania, Apulia and Calabria, pepper and zucchini plants showing Phytophthora blight symptoms, tomato plants with either late blight or buckeye rot symptoms, plants of strawberry showing crown rot symptoms and declining clementine trees with root and fruit rot were examined for Phytophthora infections by means of polymerase chain reaction (PCR) assays, using primers directed to nuclear ribosomal DNA (rDNA) repeat sequences. All diseased plants and trees examined tested positive. The detected fungal-like organisms were differentiated and characterized on the basis of primer specificity as well as through extensive restriction fragment length polymorphism (RFLP) and sequence analysis of PCR-amplified rDNA. Phytophthora capsici was identified in diseased pepper and zucchini plants, P. infestans was identified in tomato with late blight symptoms whereas buckeye rot-affected tomatoes and diseased strawberry plants proved to be infected by P. nicotianae and P. cactorum, respectively. Declining clementine trees were infected with P. citrophthora and P. nicotianae in about the same proportion. Also, thirty-one pure culture-maintained isolates of Phytophthora which had previously been identified in southern Italy by traditional methods but were never examined molecularly, were examined by RFLP and sequence analysis of PCR-amplified nuclear rDNA. Among these, an isolate from gerbera which had previously been identified by traditional methods only at genus level, was assigned to P. tentaculata. For the remaining pure culture-maintained isolates examined, the molecular identification data obtained corresponded with those delineated by traditional methods. Most of the diseases examined were already known to occur in southern Italy but the pathogens were molecularly detected and fully characterized at nuclear rDNA repeat level only from other geographic areas, very often outside Italy. A new disease to southern Italy was the Phytophthora blight of zucchini. This is also the first report on the presence and molecular identification of P. tentaculata from Italy.