Main content area

Climate change impact of integrating a solar microgrid system into the Swedish electricity grid

Papageorgiou, Asterios, Ashok, Archana, Hashemi Farzad, Tabassom, Sundberg, Cecilia
Applied energy 2020 v.268 pp. 114981
batteries, carbon, climate change, electricity, electricity generation, emissions factor, greenhouse gas emissions, greenhouse gases, solar energy, trade, Sweden
Microgrids are small-scale electricity networks that integrate distributed electricity generation with consumers and, potentially, with storage devices. There is growing interest in these systems, as they can offer solutions for electrification of remote areas, deployment of distributed renewable energy resources, and decarbonization of electricity supply. However, the potential benefits of microgrids in terms of climate change mitigation have not yet been thoroughly assessed. In this study, Life Cycle Assessment was performed to determine the climate change impact of integrating a solar microgrid system in western Sweden into the Swedish electricity grid. To determine whether replacement of grid electricity with electricity from the microgrid can lower greenhouse gas (GHG) emissions, average and marginal GHG emission factors (EFs) for electricity use were estimated with explicit spatial and temporal resolution, using historical data on electricity generation and trade, and life cycle EFs for electricity generation technologies. The assessment, with both marginal and average EFs, showed that integration of the microgrid into the Swedish electricity grid did not provide GHG emissions abatements, as the electricity from the microgrid displaced grid electricity with lower carbon intensity. It was found that a microgrid without batteries would have lower climate change impact, but would still fail to lower overall GHG emissions. Moreover, it was demonstrated that the methodological approach used for estimation of EFs and the definition of spatial boundaries could influence the obtained results.