Main content area

Evolution of major and minor components and oxidation indices of virgin olive oil during 21 months storage at room temperature

Gomez-Alonso, S., Mancebo-Campos, V., Desamparados Salvador, M., Fregapane, G.
Food chemistry 2007 v.100 no.1 pp. 36-42
olive oil, lipid peroxidation, food composition, food quality, storage temperature, storage time, temporal variation, antioxidants, antioxidant activity, scotophase, alpha-tocopherol, phenolic compounds, peroxide value, shelf life
This article reports the evolution of major and minor components and oxidation indices of seven samples of virgin olive oil (VOO) which differ in their initial contents of natural antioxidants, during 21 months of storage at room temperature and in darkness. As expected, statistically significant differences in the antioxidant contents were observed, with initial concentrations ranging from 0.33 to 0.55 mmol/kg for α-tocopherol and from 1.08 to 3.88 mmol/kg for total phenols. The quality indices PV, K232 and K270 increased linearly during the storage time studied (21 months), which should make it possible to predict the shelf-life of a VOO sample by extrapolation from the results obtained during a relatively short period of storage (i.e. several weeks). K232 was the first parameter that exceeded the established upper limit for extra VOO and therefore seems to be the most relevant index for analysis and monitoring to determine the commercial category of the olive oil. The reduction of total phenolic compounds ranged from 43% to 73%, and it was remarkable that the decrease was higher in samples whose initial phenol contents were greater. Hydroxytyrosol increased linearly in most samples, whereas its complex forms decreased considerably, with the exception of two in which the hydroxytyrosol content decreased continuously or diminished after an initial increase. This fact was probably due to the low initial concentration of hydroxytyrosol secoiridoid forms: i.e. 0.32 mmol/kg for the sum of 3,4-DHPEA-EDA and 3,4-DHPEA-EA in one of these samples as compared to between 0.65 and 2.06 mmol/kg in the others. Finally, there was a slight and apparently linear fall in the α-tocopherol content of all samples, with a reduction ranging from 0.054 mmol/kg (12%) to 0.127 mmol/kg (23%), although there may be a short lag phase at the beginning of the assay.