Main content area

The GEFSOC soil carbon modelling system: A tool for conducting regional-scale soil carbon inventories and assessing the impacts of land use change on soil carbon

Easter, M., Paustian, K., Killian, K., Williams, S., Feng, T., Al-Adamat, R., Batjes, N.H., Bernoux, M., Bhattacharyya, T., Cerri, C.C.
Agriculture, ecosystems & environment 2007 v.122 no.1 pp. 13-25
environmental assessment, soil organic carbon, land use change, agroecology, greenhouse gases, carbon sequestration, global carbon budget, environmental models, global change, agroecosystems, dynamic models, climate change, United Nations, computer software
The GEFSOC soil carbon modelling system was built to provide interdisciplinary teams of scientists, natural resource managers and policy analysts (who have the appropriate computing skills) with the necessary tools to conduct regional-scale soil carbon (C) inventories. It allows users to assess the effects of land use change on soil organic C (SOC) stocks, soil fertility and the potential for soil C sequestration. The tool was developed in conjunction with case-studies of land use and management impacts on SOC in Brazil, Jordan, Kenya and India, which represent a diversity of land use and land management patterns and are countries where sustaining soil organic matter and fertility for food security is an on-going problem. The tool was designed to run using two common desktop computers, connected via a local area network. It utilizes open-source software that is freely available. All new software and user interfaces developed for the tool are available in an open source environment allowing users to examine system details, suggest improvements or write additional modules to interface with the system. The tool incorporates three widely used models for estimating soil C dynamics: (1) the Century ecosystem model; (2) the RothC soil C decomposition model; and (3) the Intergovernmental Panel on Climate Change (IPCC) method for assessing soil C at regional scales. The tool interacts with a Soil and Terrain Digital Database (SOTER) built for the specific country or region the user intends to model. A demonstration of the tool and results from an assessment of land use change in a sample region of North America are presented.