U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

KAgX (X = S, Se): High-Performance Layered Thermoelectric Materials for Medium-Temperature Applications

Author:
Xue-Liang Zhu, Hengyu Yang, Wu-Xing Zhou, Baotian Wang, Ning Xu, Guofeng Xie
Source:
ACS applied materials & interfaces 2020 v.12 no.32 pp. 36102-36109
ISSN:
1944-8252
Subject:
density functional theory, equations, heat transfer, selenium, sulfur, thermal conductivity
Abstract:
Monolayer KAgX are a class of novel two-dimensional (2D) layered materials with efficient optical absorption and superior carrier mobility, signifying their potential application prospect in photovoltaic (PV) and thermoelectric (TE) fields. Motivated by the recent theoretical studies on the KAgX monolayer, we carried out systematic investigations on the TE performance of KAgS and KAgSe monolayers, employing density functional theory (DFT) and semiclassical Boltzmann transport equation (BTE). For both KAgSe and KAgS monolayers, large Grüneisen parameters, low group velocities, and short phonon scattering time greatly hinder their heat transport and result in an ultralow thermal conductivity, 0.26 and 0.33 W m–¹ K–¹ at 300 K, respectively. A twofold degeneracy appearing at the Γ point and the abrupt slope of the density of states (DOS) near the Fermi level give rise to high Seebeck coefficients of KAgX monolayers. Due to the ultralow thermal conductivity and excellent electronic transport performance, the ZT values as high as 4.65 (3.11) and 4.05 (2.63) at 500 (300) K in the n-type doping for KAgSe and KAgS monolayers are obtained. The exceptional performance of KAgX monolayers sheds light on their immense potential applications in the medium-temperature (around 300–500 K) thermoelectric devices and greatly stimulates further experimental synthesis and validation.
Agid:
7070603