U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Evaluation and comparison of the effects of three insect growth regulators on honey bee queen oviposition and egg eclosion

Julia D. Fine
Ecotoxicology and environmental safety 2020 v.205 pp. 111142
Apis mellifera, animal health, comparative study, eclosion, environmental exposure, fecundity, hatching, hypopharyngeal glands, imagos, insect development, insect eggs, insect larvae, insect reproduction, methoxyfenozide, oviposition, queen honey bees, sublethal effects, worker honey bees
Honey bees (Apis mellifera) are highly valued pollinators that help to ensure national food security in the United States, but reports of heavy annual losses to managed colonies have caused concerns and prompted investigations into the causes of colony losses. One factor that can negatively affect honey bee health and survival is agrochemical exposure. Investigations into the sublethal effects of agrochemicals on important metrics of colony health such as reproduction and queen fecundity has been limited by the availability of targeted methods to study honey bee queens. This work investigates the effects of three insect growth regulators (IGR), a class of agrochemicals known to target pathways involved in insect reproduction, on honey bee queen oviposition, egg hatching, and worker hypopharyngeal development in order to quantify their effects on the fecundity of mated queens. The reported results demonstrate that none of the IGRs affected oviposition, but all three affected egg eclosion. Worker bees consuming methoxyfenozide had significantly larger hypopharyngeal glands at two weeks of age than bees not fed this compound. The results suggest that although IGRs may not exhibit direct toxic effects on adult honey bees, they can affect larval eclosion from eggs and the physiology of workers, which may contribute to colony population declines over time.