U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Characterization and Analysis of Anthocyanin-Related Genes in Wild-Type Blueberry and the Pink-Fruited Mutant Cultivar ‘Pink Lemonade’: New Insights into Anthocyanin Biosynthesis

Jones Richard W., Jose V. Die, Richard W. Jones, Elizabeth L. Ogden, Mark K. Ehlenfeldt, Lisa J. Rowland
Agronomy 2020 v.10 no.9 pp. -
Vaccinium, anthocyanins, antioxidants, biosynthesis, blueberries, cultivars, fruiting, fruits, mutants, phenotype, quantitative polymerase chain reaction, regulator genes, sequence analysis, structural genes, transcription (genetics), transcription factors, vegetables
Blueberries are one of the richest sources of antioxidants, such as anthocyanins, among fruits and vegetables. Anthocyanin mutants, like the pink-fruited cultivar ‘Pink Lemonade’, are valuable resources for investigating anthocyanin biosynthesis in blueberries. In this study, we examined expression of flavonoid pathway genes during fruit development in wild-type, blue-fruited blueberries using quantitative real-time PCR. Expression was also compared between wild-type and the pink-fruited ‘Pink Lemonade’. This revealed significantly lower expression in ‘Pink Lemonade’ than in wild-type of nearly all the structural genes examined suggesting that a transcriptional regulator of the pathway was affected. Hence, we compared expression of three known regulatory genes and found that the gene encoding the transcription factor MYB1 was expressed at a significantly lower level in ‘Pink Lemonade’ than in the wild-type. To validate the capacity of this MYB1 to regulate the transcription of anthocyanin genes in blueberries, a transient expression assay was conducted. Results indicated MYB1 overexpression enhanced anthocyanin production. Comparative sequence analysis between wild-type and mutant MYB1 variants found differences in highly conserved features suggesting a mechanistic explanation for the mutant phenotype. Collectively, the results presented here contribute to a better understanding of mechanisms regulating anthocyanin biosynthesis in Vaccinium.