U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Occurrence of multidrug resistant Salmonella in antimicrobial-free (ABF) swine production systems

Thakur, S., Tadesse, D.A., Morrow, M., Gebreyes, W.A.
Veterinary microbiology 2007 v.125 no.3-4 pp. 362-367
tetracycline, extensive farming, Salmonella Typhimurium, streptomycin, slaughter, swine diseases, multiple drug resistance, farms, risk assessment, epidemiological studies, slaughterhouses, serotypes, pathogen identification, swine, antibiotic resistance, disease prevalence, disease transmission, environmental factors, salmonellosis, intensive livestock farming, North Carolina
This cross-sectional study was conducted to determine the prevalence and antimicrobial resistance of Salmonella species in swine reared in the intensive (indoor) and extensive (outdoor) ABF production systems at farm and slaughter in North Carolina, U.S.A. We sampled a total of 279 pigs at farm (extensive 107; intensive 172) and collected 274 carcass swabs (extensive 124; intensive 150) at slaughter. Salmonella species were tested for their susceptibility against 12 antimicrobial agents using the Kirby-Bauer disk diffusion method. Serogrouping was done using polyvalent and group specific antisera. A total of 400 salmonellae were isolated in this study with a significantly higher Salmonella prevalence from the intensive (30%) than the extensive farms (0.9%) (P < 0.001). At slaughter, significantly higher Salmonella was isolated at the pre- and post-evisceration stages from extensively (29% pre-evisceration and 33.3% post-evisceration) than the intensively (2% pre-evisceration and 6% post-evisceration) reared swine (P < 0.001). The isolates were clustered in six serogroups including B, C, E1, E4, G and R. Highest frequency of antimicrobial resistance was observed against tetracycline (78.5%) and streptomycin (31.5%). A total of 13 antimicrobial resistance patterns were observed including the pentaresistant strains with ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, tetracycline resistance pattern observed only among isolates from the intensive farms (n = 28) and all were serotype Salmonella typhimurium var. Copenhagen. In conclusion, this study shows that multidrug resistant Salmonella are prevalent in ABF production systems despite the absence of antimicrobial selection pressure. In addition, it also highlights the possible role played by slaughterhouse and other environmental factors in the contamination and dissemination of antimicrobial resistant Salmonella in ABF production systems.