U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Evaluation of AnnAGNPS Model for Runoff Simulation on Watersheds from Glaciated Landscape of USA Midwest and Northeast

Bingner Ronald L., Marzia Tamanna, Soni M. Pradhanang, Arthur J. Gold, Kelly Addy, Philippe G. Vidon, Ronald L. Bingner
Water 2020 v.12 no.12 pp. -
aquatic ecosystems, area, calibration, climate, ecosystem management, estimation, hydrologic models, land use change, landscapes, nonpoint source pollution, pollution load, prediction, riparian areas, rivers, runoff, streams, volume, water supply, watersheds, Indiana, New York, Rhode Island
Runoff modeling of glaciated watersheds is required to predict runoff for water supply, aquatic ecosystem management and flood prediction, and to deal with questions concerning the impact of climate and land use change on the hydrological system and watershed export of contaminants of glaciated watersheds. A widely used pollutant loading model, Annualized Agricultural Non-Point Source Pollution (AnnAGNPS) was applied to simulate runoff from three watersheds in glaciated geomorphic settings. The objective of this study was to evaluate the suitability of the AnnAGNPS model in glaciated landscapes for the prediction of runoff volume. The study area included Sugar Creek watershed, Indiana; Fall Creek watershed, New York; and Pawcatuck River watershed, Rhode Island, USA. The AnnAGNPS model was developed, calibrated and validated for runoff estimation for these watersheds. The daily and monthly calibration and validation statistics (NSE > 0.50 and RSR < 0.70, and PBIAS ± 25%) of the developed model were satisfactory for runoff simulation for all the studied watersheds. Once AnnAGNPS successfully simulated runoff, a parameter sensitivity analysis was carried out for runoff simulation in all three watersheds. The output from our hydrological models applied to glaciated areas will provide the capacity to couple edge-of-field hydrologic modeling with the examination of riparian or riverine functions and behaviors.