U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Integrated Technology for Evaluation and Assessment of Multi-Scale Hydrological Systems in Managing Nonpoint Source Pollution

Bingner Ronald L., Henrique Momm, Ron Bingner, Robert Wells, Katy Moore, Glenn Herring
Water 2021 v.13 no.6 pp. -
basins, nonpoint source pollution, rain, sediment yield, stream flow, subwatersheds, suspended sediment, water
Conservation agencies need information to guide planning activities and allocation of limited mitigation resources at regional scales. Utilization of hydrological modeling tools at sub-watershed scales can adequately represent existing conditions, but information on a few discrete uncoordinated efforts cannot be scaled up to the entire region. Conversely, large scale modeling studies suffer from overgeneralization caused by needed lumping of information. In this study, a multiscale and standardized procedure was sought to characterize water and nonpoint source pollution spatiotemporal dynamics at basin-scale but through detailed field-scale analysis. The AnnAGNPS watershed pollution model was enhanced with new capabilities for simulation of large areas based on an Integrated Technology for Evaluation and Assessment of Multi-scale-hydrological Systems (ITEAMS) approach. Comparisons between the standard and proposed ITEAMS approach indicated no difference in streamflow and small underestimation of suspended sediments during high intensity rainfall events. The ITEAMS approach was applied to a basin with a total area of 3,268,691 ha which was discretized into 469,628 sub-catchments with an average size of 6.8 ha. The resulting 366 linked AnnAGNPS simulations were executed hierarchically generating estimates of water and suspended sediment yield and loads. This pilot study revealed the ITEAMS approach is a viable alternative for modeling and simulating large areas but at high spatiotemporal resolution.