U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

Probing the role of Val228 on the catalytic activity of Scytalidium catalase

Author:
Gunce Goc, Sinem Balci, Briony A. Yorke, Arwen R. Pearson, Yonca Yuzugullu Karakus
Source:
Biochimica et biophysica acta 2021 v.1869 no.8 pp. 140662
ISSN:
1570-9639
Subject:
Scytalidium, catalase, catalytic activity, catechol, crystal structure, heme, hydrogen peroxide, oxygen, phenol
Abstract:
Scytalidium catalase is a homotetramer including heme d in each subunit. Its primary function is the dismutation of H₂O₂ to water and oxygen, but it is also able to oxidase various small organic compounds including catechol and phenol. The crystal structure of Scytalidium catalase reveals the presence of three linked channels providing access to the exterior like other catalases reported so far. The function of these channels has been extensively studied, revealing the possible routes for substrate flow and product release. In this report, we have focussed on the semi-conserved residue Val228, located near to the vinyl groups of the heme at the opening of the lateral channel. Its replacement with Ala, Ser, Gly, Cys, Phe and Ile were tested. We observed a significant decrease in catalytic efficiency in all mutants with the exception of a remarkable increase in oxidase activity when Val228 was mutated to either Ala, Gly or Ser. The reduced catalytic efficiencies are characterized in terms of the restriction of hydrogen peroxide as electron acceptor in the active centre resulting from the opening of lateral channel inlet by introducing the smaller side chain residues. On the other hand, the increased oxidase activity is explained by allowing the suitable electron donor to approach more closely to the heme. The crystal structures of V228C and V228I were determined at 1.41 and 1.47 Å resolution, respectively. The lateral channels of the V228C and V228I presented a broadly identical chain of arranged waters to that observed for wild-type enzyme.
Agid:
7349636