U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Challenges and potential solutions in statistical downscaling of precipitation

Jie Chen, Xunchang John Zhang
Climatic change 2021 v.165 no.3-4 pp. 63
Markov chain, atmospheric precipitation, climate change, climate models, crop models, environmental impact, hydrologic models, probability distribution, temporal variation
Downscaling is an effective technique to bridge the gap between climate model outputs and data requirements of most crop and hydrologic models for assessing local and site-specific climate change impacts, especially on future food security. However, downscaling of temporal sequences, extremes in daily precipitation, and handling of nonstationary precipitation in future conditions are considered common challenges for most statistical downscaling methods. This study reviewed the above key challenges in statistical downscaling and proposed potential solutions. Ten weather stations located across the globe were used as proof of concept. The use of a stochastic Markov chain to generate daily precipitation occurrences is an effective approach to simulate the temporal sequence of precipitation. Also, the downscaling of precipitation extremes can be achieved by adjusting the skewness coefficient of a probability distribution, as they are highly correlated. Nonstationarity in precipitation downscaling can be handled by adjusting parameters of a probability distribution according to future precipitation change signals projected by climate models. The perspectives proposed in this study are of great significance in using climate model outputs for assessing local and site-specific climate change impacts, especially on future food security.