U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Vitamin D and rosuvastatin obliterate peripheral neuropathy in a type-2 diabetes model through modulating Notch1, Wnt-10α, TGF-β and NRF-1 crosstalk

Engie S. El-Sawaf, Samira Saleh, Dalaal M. Abdallah, Kawkab A. Ahmed, Hanan S. El-Abhar
Life sciences 2021 v.279 pp. 119697
apoptosis, biogenesis, caspase-3, cholecalciferol, diet, electrophysiology, fibrosis, fructose, histology, inflammation, interleukin-18, mitochondria, models, nerve tissue, neurodegenerative diseases, neurons, noninsulin-dependent diabetes mellitus, peripheral nervous system diseases, rats, streptozotocin, tail flick test
Vitamin D and rosuvastatin are well-known drugs that mediate beneficial effects in treating type-2 diabetes (T2D) complications; however, their anti-neuropathic potential is debatable. Hence, our study investigates their neurotherapeutic potential and the possible underlying mechanisms using a T2D-associated neuropathy rat model. Diabetic peripheral neuropathy (DPN) was induced with 8 weeks of administration of a high fat fructose diet followed by a single i.p. injection of streptozotocin (35 mg/kg). Six weeks later, DPN developed and rats were divided into five groups; viz., control, untreated DPN, DPN treated with vitamin D (cholecalciferol, 3500 IU/kg/week), DPN treated with rosuvastatin (10 mg/kg/day), or DPN treated with combination vitamin D and rosuvastatin. We determined their anti-neuropathic effects on small nerves (tail flick test); large nerves (electrophysiological and histological examination); neuronal inflammation (TNF-α and IL-18); apoptosis (caspase-3 activity and Bcl-2); mitochondrial function (NRF-1, TFAM, mtDNA, and ATP); and NICD1, Wnt-10α/β-catenin, and TGF-β/Smad-7 pathways. Two-month treatment with vitamin D and/or rosuvastatin regenerated neuronal function and architecture and abated neuronal inflammation and apoptosis. This was verified by the inhibition of the neuronal content of TNF-α, IL-18, and caspase-3 activity, while augmenting Bcl-2 content in the sciatic nerve. These treatments inhibited the protein expressions of NICD1, Wnt-10α, β-catenin, and TGF-β; increased the sciatic nerve content of Smad-7; and enhanced mitochondrial biogenesis and function. Vitamin D and/or rosuvastatin alleviated diabetes-induced neuropathy by suppressing Notch1 and Wnt-10α/β-catenin; modulating TGF-β/Smad-7 signaling pathways; and enhancing mitochondrial function, which lessened neuronal degeneration, demyelination, and fibrosis.