Main content area

Greenhouse gas emissions from rice farming inputs: a cross-country assessment

Maraseni, T.N., Mushtaq, S., Maroulis, J.
Journal of agricultural science 2009 v.147 no.2 pp. 117-126
Oryza sativa, rice, grain crops, crop management, greenhouse gases, gas emissions, irrigation systems, farm inputs, cropping systems, irrigation canals, rain, grain yield, carbon dioxide
Regardless of the irrigation system deployed, rice production requires a variety of farm energy inputs. The present study estimated and compared greenhouse gas (GHG) emissions from rice farming practices, resulting from various farm inputs and irrigation systems in Pakistan, the Philippines, China, Indonesia, Myanmar, Nepal, Australia and the USA. Results indicate that, on aggregate, emissions related to farm machinery, fuels, agrochemicals and animal labour accounted for 0·018, 0·307, 0·666 and 0·008, respectively. Emissions from tubewell irrigation systems were the highest, followed by canal and rainfed irrigation systems. Average emissions from all selected countries with tubewell irrigation systems were 1·64 times greater than canal irrigation systems and 2·64 times greater than rainfed irrigation systems. When considering GHG emission efficiencies (emissions/kg of rice yield), developing countries were found to be less efficient than developed countries in both canal and tubewell irrigation systems. The relationship between GHG emissions and rice yield was statistically significant (P<0·01), with results indicating that a yield increase of 100 kg would increase GHG emissions by 16·51 kg CO2e (kg carbon dioxide equivalent).