Main content area

Surface physicochemical analysis of natural Lactococcus lactis strains reveals the existence of hydrophobic and low charged strains with altered adhesive properties

Giaouris, Efstathios, Chapot-Chartier, Marie-Pierre, Briandet, Romain
International journal of food microbiology 2009 v.131 no.1 pp. 2-9
Lactococcus lactis, lactic acid bacteria, dairy products, physicochemical properties, surface active properties, hydrophobicity, cell adhesion, electrostatic interactions, bioactive properties
The cell surface physicochemical properties of 50 Lactococcus lactis strains of different subspecies and isolated from different origins (dairy, vegetal and animal) were examined. Cell surface hydrophobicity and Lewis acid-base properties were evaluated by affinity measurements to solvents in a partitioning test, while the global electrical charge of the cells was assessed by micro-electrophoresis using a laser zeta-meter. A global multivariate analysis of the results revealed a high natural diversity of L. lactis cell surface properties. While 52% of the strains present a hydrophilic and electronegative cell wall surface, a group of strikingly hydrophobic strains (12% of the strains) and a group of strains with unusual low charged surface (18%) were identified. Adhesion on polystyrene microtitre plates was evaluated for twelve strains selected from the multivariate analysis as representatives of the various observed cell wall surface physicochemical patterns. A significant correlation between adhesion, hydrophobicity and low electronegativity was observed when adhesion was performed in a low ionic strength suspending medium. The most adhesive strains were hydrophobic or low charged. The presence of repulsive electrostatic interactions led to a decrease in adhesion of the most negatively charged hydrophilic strains. The present study highlights the diversity of L. lactis cell surface physicochemical properties, diversity that could not be connected to the origin or to the subspecies of the strains.