U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

Effectiveness evaluation of water-sprinkling in controlling urban fugitive road dust based on TRAKER method: A case study in Baoding, China

Author:
Yuefan Zhang, Jianhua Chen, Dong Li, Shuang Zhu, Jian Gao
Source:
Journal of environmental sciences (China) 2023 v.124 pp. 735-744
ISSN:
1001-0742
Subject:
aerosols, air pollution, case studies, dust, rain, China
Abstract:
Fugitive road dust (FRD) contributes a great deal to urban rainwater and air pollution and is commonly controlled by water-sprinkling in most Chinese cities. However, there is a lack of information on its effectiveness. We used the Testing Re-entrained Aerosol Kinetic Emissions from Roads (TRAKER) method to monitor different types of roads in Baoding city before and within 1 hr after water-sprinkling and obtained the road dirtiness index (a) and PM concentration in the road environment (TT*), to evaluate the removal efficiency for PM deposited on the road surface (ηa) and the reduction efficiency for the PM concentration in the road environment (ηPM). The results give that the ηa for three types of roads is ranked: branch road (87%-–100%) > major arterial road (80%-83%) > minor arterial road (68–%-77%), and the ηPM ranked: minor arterial road (70%) > branch road (46%-58%) > major arterial road (37%-53%). The ηa and ηPM varied non-linearly with time and presented a quadratic curve. The average effective control time (ηa> 0) was 62 min on the major and minor arterial roads, and much longer than 1 hr on branch roads. The ηPM values diminished completely by 72 min on average from the end of sprinkling for the three types of roads. Water-sprinkling can remove PM₁₀ particles from the road surface and reduce their concentration in the road environment more thoroughly than PM₂.₅. Our findings could be helpful for controlling urban FRD emissions more efficiently and precisely.
Agid:
7603205