U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Real-time assessment of spinal cord microperfusion in a porcine model of ischemia/reperfusion

Behem Christoph R., Friedheim Till, Wipper Sabine H., Pinnschmidt Hans O., Graessler Michael F., Gaeth Catharina, Holthusen Hannes, Rapp Adina, Suntrop Timo, Haunschild Josephina, Etz Christian D., Trepte Constantin J. C.
Journal of visualized experiments 2020 no.166 pp. e62047
animal injuries, animal models, aorta, cerebrospinal fluid, drainage, fluorescence, hemodynamics, histopathology, ischemia, microparticles, oxygen, patients, spinal cord, swine
Spinal cord injury is a devastating complication of aortic repair. Despite developments for the prevention and treatment of spinal cord injury, its incidence is still considerably high and therefore, influences patient outcome. Microcirculation plays a key role in tissue perfusion and oxygen supply and is often dissociated from macrohemodynamics. Thus, direct evaluation of spinal cord microcirculation is essential for the development of microcirculation-targeted therapies and the evaluation of existing approaches in regard to spinal cord microcirculation. However, most of the methods do not provide real-time assessment of spinal cord microcirculation. The aim of this study is to describe a standardized protocol for real-time spinal cord microcirculatory evaluation using laser-Doppler needle probes directly inserted in the spinal cord. We used a porcine model of ischemia/reperfusion to induce deterioration of the spinal cord microcirculation. In addition, a fluorescent microsphere injection technique was used. Initially, animals were anesthetized and mechanically ventilated. Thereafter, laser-Doppler needle probe insertion was performed, followed by the placement of cerebrospinal fluid drainage. A median sternotomy was performed for exposure of the descending aorta to perform aortic cross-clamping. Ischemia/reperfusion was induced by supra-celiac aortic cross-clamping for a total of 48 min, followed by reperfusion and hemodynamic stabilization. Laser-Doppler Flux was performed in parallel with macrohemodynamic evaluation. In addition, automated cerebrospinal fluid drainage was used to maintain a stable cerebrospinal pressure. After completion of the protocol, animals were sacrificed, and the spinal cord was harvested for histopathological and microsphere analysis. The protocol reveals the feasibility of spinal cord microperfusion measurements using laser-Doppler probes and shows a marked decrease during ischemia as well as recovery after reperfusion. Results showed comparable behavior to fluorescent microsphere evaluation. In conclusion, this new protocol might provide a useful large animal model for future studies using real-time spinal cord microperfusion assessment in ischemia/reperfusion conditions.